ABSTRACT
An earliest Triassic methane postapocalyptic greenhouse following the Permian-Triassic (P-T) extinction event was proposed on the basis of evidence of deeply weathered paleosols at high latitudes with features of low-latitude soils, and low stomatal index values of seed fern leaves. Reexamination of distinctive phyllosilicates, unique to a single stratigraphic level, in paleosols located just above the isotopically defined Permian-Triassic boundary in Australia and Antarctica furnishes additional tests of this hypothesis. Illite is the dominant clay mineral in earliest Triassic paleosols from Antarctica, but the paleosols also contain conspicuous green nodules of coarsely crystalline berthierine. Examples from the geologic record and from experimental studies indicate that the formation of berthierine is restricted to reducing conditions. The occurrence of this unusual mineral in soils may indicate soil oxygen consumption by the influx of atmospheric methane to form carbon dioxide, which in turn warmed the earliest Triassic, giving rise to a postapocalyptic greenhouse.

Keywords: paleosols, berthierine, paleoclimate, Permian-Triassic, boundary.

INTRODUCTION
The Permian-Triassic life crisis was the greatest extinction in the history of life, variously attributed to an extraterrestrial impactor (Becker et al., 2001), Siberian Traps flood volcanism (Renne et al., 1995), oceanic anoxia (e.g., Hotinski et al., 2001), and food-web collapse (Wang et al., 1994). While the Permian-Triassic boundary has long been recognized as a catastrophic interval for marine life (Erwin, 1993), numerous lines of evidence, including a global fungal spike (Eshet et al., 1995), global coal gap (Retallack et al., 1996), and significant diversity loss of fossil plants (Looy et al., 1999) and animals (Smith and Ward, 2001), point to similar decimation of terrestrial biota. Retallack (1999) and Retallack and Krull (1999) suggested that the earliest Triassic was marked by a postapocalyptic greenhouse: an abrupt shift to warmer temperatures, and to oligotrophic, low-productivity ecosystems at high latitudes. Krull et al. (2000) and Krull and Retallack (2000) used δ¹³Corganic evidence to suggest a high-latitude CH₄ (methane) release in the earliest Triassic, and de Wit et al. (2002) emphasized that δ¹³Corganic changes are consistent with multiple methane dissociation events. Carbon cycle modeling by Berner (2002) indicates that the δ¹³C isotopic excursion across the Permian-Triassic boundary is best explained by the introduction of methane to the atmosphere. The release could come from either marine methane clathrates or from extensive high-latitude permafrost clathrates (Retallack and Krull, 1999; Krull et al., 2000). An initial perturbation of marine or permafrost clathrates from any of these mechanisms, or some combination of them, would lead to increased atmospheric CH₄ and its oxidation product CO₂, which could in turn lead to further clathrate melting as a positive feedback for the global climate system. An abrupt rise in CO₂ is also revealed by an abrupt decline in the stomatal index of earliest Triassic seed ferns (Retallack, 2001). Such an event could dramatically change the redox conditions of the atmosphere and the soil-atmosphere interface because large amounts of oxygen would be consumed in oxidizing the CH₄ to CO₂.

With these ideas in mind we analyzed phyllosilicates and carbonates from paleosols, stratigraphically just above the isotopically located Permian-Triassic boundary in Australia and Antarctica. At Graphite Peak, Mount Crean, and Allan Hills in Antarctica (Retallack and Krull, 1999), the Dolores pedotype has prominent green phyllosilicate nodules, which are unknown from paleosols at any other Permian or younger Triassic level in the sections. The sideritic Wybung pedotype in the Australia sections at Wybung Head and Coalcliff is also confined to the boundary interval (Retallack, 1999). X-ray diffraction (XRD) on the clay fraction (<2 µm) of all the paleosols showed a strong 7 Å (d-spacing) peak as in berthierine, but also a 14 Å peak as in chlorite, barely above background (Fig. 1). Because berthierine is unusual and chlorite common, the green mineral was originally designated chlorite (Retallack and Krull, 1999). Berthierine is an iron-aluminum 1:1-type layer silicate of the serpentine group that may be mistaken for chamosite (Fe-chlorite;
Brindley, 1982). Berthierine has been found in a number of chemically reducing depositional settings, including marine mudstones (Ahn and Peacor, 1985), ironstones (Taylor and Curtis, 1995), as ooids or pisoids (Hornbrook and Longstaffe, 1996), or in sulfide deposits (Jiang et al., 1992), and it is rarely found as a soil mineral (Fritz and Toth, 1997; Taylor, 1990; Kodama and Foscolos, 1981). Berthierine is an indicator of chemically reducing conditions (Fritz and Toth, 1997; Taylor and Curtis, 1995) where sulfide and bicarbonate activity is low because pyrite and siderite, respectively, form instead if those species are present at sufficiently high levels. Sawicki et al. (1995) described a biofilm with protoferricydrate forming on one side and siderite forming on the other. This suggests that biomineralization can play an important role in the fabrication of ferrous iron minerals. Given that siderite is present in the Australian paleosol, biomineralization may have been important; however, little is known about the role of microbes in berthierine formation. The object of this study was to use a combination of electron probe microanalysis (EPMA) and scanning electron microscopy (SEM) to study clay minerals in the earliest Triassic paleosols from Antarctica and Australia to differentiate between chlorite and berthierine and to examine their relevance to paleoatmospheric conditions using a simple thermodynamic model.

METHODS
Polished thin sections of six samples were used for EPMA, and two of those same samples were used for SEM analysis. Table DR-1\(^1\) summarizes sample characteristics. All six samples were examined petrographically and with XRD in addition to EPMA and SEM analysis.

To differentiate between chlorite and berthierine, selected grains were analyzed for major element oxides using quantitative EPMA with an acceleration voltage of 15 keV and a regulated beam current of 10 nA. All backscatter images were obtained using an acceleration voltage of 15 keV and an unregulated beam current of \(\sim 2.5 \pm 0.1\) nA. The image capture time was 40 s. EPMA count times were variable according to the element, ranging from 10 s (Na) to 30 s (Mn); most elements were counted for 20 s.

RESULTS
SEM-EDS (energy-dispersive) spectra with iron, silicon, and aluminum peaks were selected for imaging. Most of these spectra also included a small, though significant, peak at magnesiu.m. Among the other minerals present were smectite, illite, titanite, quartz, hematite, and rare feldspar grains. Australian samples also had kaolinite and siderite, while the Antarctic samples lacked siderite and had little or no kaolinite. Common features of the berthierines from the literature and the grains from this study are elongation of the grains and intergrowth of the crystals with others (Fig. 2). Figure 2 also shows that the grains in this study are authigenic because there are no metamorphic features such as planar fracturing or dissolution (Retallack and Krinsley, 1993); nor is there rounding, ferruginization, or other evidence of transport.

Our analytical data for iron-bearing clays (Table DR-2; see footnote 1) can be compared with previous berthierine analyses of Brindley (1982), Toth and Fritz (1997), and Hornbrook and Longstaffe (1996) in Table DR-3 (see footnote 1). Some of the grains analyzed in this study are iron poor and magnesium rich relative to most of the analyses presented by Brindley (1982) and to the data of Toth and Fritz (1997), but are very similar compositionally to other berthierines of Brindley (1982) and Hornbrook and Longstaffe (1996) (Fig. 3). Low oxide totals of Tables DR-2 and DR-3 represent loss of water, because both chlorite and berthierine are hydrous minerals.

\(^{1}\)GSA Data Repository item 2002109, Tables DR-1 to DR-5, sample descriptions, microprobe data, and thermodynamic data, is available from Documents Secretary, GSA, PO. Box 9140, Boulder, CO 80301-9140, editing@geosociety.org, or at www.geosociety.org/pubs/ft2002.htm.
freely at the soil-atmosphere interface. Significant changes to atmospheric gas compositions, drive changes in soil gas compositions both directly (diffusion processes) and indirectly (changing soil respiration processes). A methane dissociation event would change soil gas chemistry both by the diffusion of methane into the soil and potentially by lowering atmospheric oxygen levels as methane oxidized in the atmosphere. Although soils may have significantly more methane or carbon dioxide than the atmosphere, no process exists for the partial pressures of those gases to be lower than those of the atmosphere. Therefore, high atmospheric methane concentrations translate to high soil methane concentrations.

While berthierine formation requires only chemically reducing conditions, there are few documented occurrences (Fritz and Toth, 1997; Taylor, 1990; Kodama and Foscolos, 1981), suggesting that special conditions such as elevated soil methane levels may be necessary to facilitate its formation in soils. Two possible origins for berthierine have been suggested: the reaction of kaolinite and goethite or hematite (essentially dehydrated goethite) in the presence of magnesium (Bhattacharyya, 1983), or the breakdown of oxides and primary clay minerals such as smectites (Taylor and Curtis, 1995). Both reaction pathways likely played a role in the formation of berthierine in Australian and Antarctic soils of the earliest Triassic. The Australian paleosol is kaolinite rich and smectite poor, while the Antarctic paleosols are kaolinite free but smectite and illite rich. Owing to uncertainties in the chemical formulae and thermodynamic properties of smectites and illites, it is most illustrative to consider the chemistry of the Australian paleosol. All thermodynamic data are taken from the SOLTHERM database, the composition of which was explained in Palandrì and Reed (2001). A reaction for the equilibrium between berthierine and kaolinite and hematite can be written as:

$$\text{Al}_2\text{Si}_2\text{O}_5\text{(OH)}_4\text{kaol} + \text{Fe}_2\text{O}_3\text{hem} = \text{Fe}_2\text{Al}_2\text{Si}_3\text{O}_9\text{(OH)}_4\text{bert} + \text{SiO}_2\text{(aq)} + \frac{1}{2}\text{O}_2\text{(g)}$$ \hspace{1cm} (1)

with $\log K = -38.948$ at 25°C (individual reactions and K values are in Table DR-5; see footnote 1). A simple reaction, probably correct for most soils, for the oxidation of methane to form carbon dioxide is given by:

$$\frac{1}{2}\text{CH}_4\text{(g)} + \frac{1}{2}\text{O}_2\text{(g)} = \frac{1}{2}\text{CO}_2\text{(g)} + \frac{1}{2}\text{H}_2\text{O}\text{(aq)}$$ \hspace{1cm} (2)

with $\log K = 37.275$ at 25°C. Each mole of methane added thus consumes 2 mol of oxygen gas. Combining reactions 1 and 2, the total reaction can be written for soil solutions:

$$\text{Al}_2\text{Si}_2\text{O}_5\text{(OH)}_3\text{kaol} + \text{Fe}_2\text{O}_3\text{hem} + \frac{1}{4}\text{CH}_4 = \text{Fe}_2\text{Al}_2\text{Si}_3\text{O}_9\text{(OH)}_4\text{bert} + \text{SiO}_2\text{(aq)} + \frac{1}{2}\text{H}_2\text{O}\text{(aq)} + \frac{1}{2}\text{CO}_2\text{(g)}.$$ \hspace{1cm} (3)

with $\log K = -1.673$ at 25°C. This relationship can be used to examine the balance between methane and carbon dioxide using a couple of assumptions. First, the activities of pure minerals and of water are taken to be unity. Second, if the total pressure of the system is one bar, as in the present atmosphere, fugacity coefficients are also unity, so gas fugacities can be expressed as partial pressures (p). This gives rise to the following expression relating the pressures of methane and carbon dioxide:

$$K = 10^{-1.673} = p^{\frac{1}{4}}(\text{CO}_2)p^{\frac{1}{2}}(\text{CH}_4).$$ \hspace{1cm} (4)

From Lechattelier’s Principle, addition of methane to Australian soils from the atmosphere would drive the formation of carbon dioxide. The present atmosphere has ~1.6 ppmv methane (Kasting et al., 2001). Strong evidence has been presented for methane clathrate dissociation as the mechanism of warming during the latest Paleocene thermal maximum, when an estimated 500–1000 Gt of methane were added to the atmosphere (Katz et al., 1999). There is at present ~615 Gt of total carbon in the atmosphere (de Wit et al., 2002), mostly as carbon dioxide. Given the significantly larger isotopic shift across the Permian-Triassic boundary (e.g., Krull and Retallack, 2000), the magnitude of methane release may have also been significantly larger. To be conservative, consider methane addition of 100 times present atmospheric levels (160 ppmv, equivalent to adding <300 Gt of methane). At equilibrium and assuming quartz saturation, methane would be balanced by 0.021 bar of CO$_2$, or ~60 times present atmospheric levels. Thus, a relatively small addition of methane to the atmosphere would result in soil carbon dioxide concentrations comparable to tropical ecosystems (Brook et al., 1983). Less conservative scenarios for methane addition would drive the partial pressure of carbon dioxide even higher.

Reconsidering equation 1, it is also possible to quantitatively assess the partial pressure of oxygen making similar assumptions to those used in applying equation 4,

$$K = 10^{-38.948} = [a(\text{SiO}_2)][p^2(\text{O}_2)].$$ \hspace{1cm} (5)

where a is activity. Assuming quartz saturation, equation 5 gives $p\text{O}_2 = 3.54 \times 10^{-18}$ bar. The present atmosphere has ~0.2 bar of O$_2$, so the presence of an assemblage of berthierine, hematite, and kaolinite in earliest Triassic soils suggests severe soil dysoxia. If the source of the dysoxia necessary to facilitate berthierine formation is increased atmospheric methane, this result is consistent with Dickinson’s (2001) suggestion that the most important consequence of methane release may be oxygen depletion rather than atmospheric warming. Berner’s (2002) carbon cycle model also predicts lowered global atmospheric pCO$_2$ relative to present values. While 25°C is almost certainly too warm for the earliest Triassic, lowering the temperature to 0–10°C, Retallack’s (1999) reconstructed mean annual temperature, has the effect of leading to even lower estimates of pCO$_2$ and higher rCO$_2$ (Fig. 4). Most natural waters have aqueous silica contents of at least quartz saturation ($10^{-4.047}$ at 25°C), and higher silica values (e.g., chalcedony saturation; $10^{-3.728}$ at 25°C) would result in significantly higher rCO$_2$ (Fig. 4). The higher temperature and lower silica estimates are used because thermodynamic properties of most minerals are measured rather than extrapolated for 25°C, and because they represent the most conservative estimates. Given that the methane release was possibly 3–14 times larger and the temperature significantly lower than 25°C, carbon dioxide levels of 60 times present levels calculated previously are probably on the low end of the range of possible values. If methane additions occurred over a longer time frame (rather than in the single pulse modeled here), as suggested by de Wit et al. (2002), then the higher values in Figure 4 might represent transient peaks (methane’s residence time in the atmosphere is only ~10 yr [Berner, 2002]) during the

![Figure 4. Comparison of silica activity to predicted CO$_2$ for various temperatures. Predicted CO$_2$ values vary as function of silica activity and of temperature. Arrows for different silica polymorphs reflect their saturation values at 25°C (diamonds). Squares (15°C) and triangles (10°C) depict effects of changing temperature. At aqueous silica activities near quartz or chalcedony, saturation temperature has significantly smaller effect on predicted soil CO$_2$ values than for unrealistically high silica values on right of figure. PAL—present atmospheric levels.](image)
event rather than the amount of CO₂ present for a prolonged time.

Earliest Triassic paleosols in Australia and Antarctica are gleyed (waterlogged) Inceptisols. Addition of methane to the atmosphere would have two effects: (1) soil oxygen would be consumed by the oxidation of methane to form carbon dioxide, leading to nearly anoxic conditions; (2) soil carbon dioxide levels at high latitudes would increase to levels consistent with the tropics. Calculations of soil gas chemistry here are consistent with Retallack's (1999) description of Early Triassic paleosols that had undergone chemical weathering inconsistent with their high paleoaltitude and consistent with subtropical conditions. Severe changes in soil gas chemistry resulting from rapid atmospheric changes would likely be the most devastating in waterlogged soils in Australia and Antarctica, where oxygen levels would have already been low. Dysoxia and hypercapnia (high pCO₂) in the soils would likely decimate most nonbacterial biota, possibly leading to a destabilization of the landscape that could result in increased terrigenous sediment flux (Ward et al., 2000) to shallow shelf areas, perhaps exacerbating existing hypercapnia and dysoxia (Hotinski et al., 2001; Berner, 2002). Dysoxia would be especially critical in wetland soils, where extinctions were profound enough to cause a prolonged coal gap (Retallack et al., 1996). Whether soils at other latitudes underwent dysoxia and hypercapnia is an open question, but high-latitude, lowland ecosystems appear to have been choked by a methane-derived postapocalyptic greenhouse.

ACKNOWLEDGMENTS

Support for the field work was provided by National Science Foundation grant OPP-9315228. We thank Cliff Ambers (X-ray diffraction), Lori Suskin (sample preparation), and Michael Shaffer (electron probe microanalysis, scanning electron microscope) for logistical support. This manuscript benefited from comments on an earlier version by Paul Schroeder and an anonymous reviewer.

REFERENCES CITED

Manuscript received March 7, 2002

Revised manuscript received June 18, 2002

Manuscript accepted June 21, 2002

Printed in USA

GEOLOGY, October 2002